Periodic Table of 2x2 Games

Payoff swaps link neighboring games
- Low swaps form tiles of 4 games
- Middle swaps join tiles into 4 layers
- High swaps cross layers, bonding bands of tiles
- Layers and table (tories) wrap side-to-side & top-to-bottom
- Layers differ by alignment of best payoffs
- Payoffs from symmetric games form asymmetric games
- High swaps turn Pd into Asym Dilemma (Sh/Pd) and Stag Hunt

Payoff Families
- Harmonious
- Win-win, 4,4
- Stag Hunt
- Biased 4,3
- Battle
- Self-serving 1,1
- Benevolent 1,2
- UNfair 4,2
- Unfair 4,2
- Inferior 3,3
- Battle-Chicken
- Dilemma 2,2
- Alibi 3,2
- Cyclic 0,0
- Indeterminate

Symmetric Games with Ties
Games with ties lie between strict ordinal games, linked by half-swaps that make or break ties. For example, Low Battle is between Battle and Hero, and Middle Battle (Volunteer's Dilemma) is between Chicken and Battle.

High Ties
Making high ties (and double ties) creates duplicate games, identical or equivalent by switching rows or columns.

Zero Ties
Basic
- Basic Harmony
- Basic Dilemma
- Triple Harmony
- Triple Lock
- Double Harmony
- Double Dilemma
- Double Coord.
- Double Hero
- Double Stag
-Double Conform

Diagram Source
- Periodic Table of 2x2 Games
 - Based on Robinson & Rothstein's 2005 The Topology of the 2x2 Games: A New Periodic Table
 - www.cs.laurentian.ca/dfoster/home.html
The Robinson-Goforth topology of payoff swaps conveniently arranges two-person two-move (2x2) games in a natural order.

Symmetric games on the diagonal. Games where each faces the same payoff pattern form a diagonal axis. Payoff patterns from symmetric games combine to make asymmetric games, and so can give names for games.

Payoff swaps link games. Starting from any strict ordinal 2x2 game (with four ranked payoffs and no ties), swaps in the lowest payoffs (1—2) generate a tile of four games. Middle swaps (2—3) start new tiles. More low and middle swaps complete a layer of nine tiles and 36 games, forming a torus that wraps top to bottom, and left to right. Swapping the highest payoffs (3—4) starts a new layer.

Dominant strategies define quadrants. In each layer's lower left quadrant, both players have a dominant strategy, so the other's best choice leads to an equilibrium. In the upper right quadrant, neither has a dominant strategy; with no equilibrium in pure strategies, as in cyclic games; or two equilibria, as in stag Hunts and Battles in the coordination quadrants.

An elegant array. Social dilemmas, including Prisoner’s Dilemma, Chicken, Battles, and Stag Hunts, form a compact connected region in the space of 2x2 games. Most games can be transformed into win-win by a single swap. Games of pure conflict, where one person’s incentives always encourage moves that make things worse for the other, negative externalities, lie on a diagonal linking the cyclic tiles, including the zero-sum (fixed rank-sum) games. Zero-sum games are farthest from win-win. Most games have mixed interests.

Mapping payoff space. If payoffs occur randomly, then the chart shows the expected proportions of different games. Half swaps make games with ties, between strict games. Games with payoffs normalized to a 1—4 scale map onto the topology, so the chart shows the payoff space of all normalized 2x2 games, and the adjacent possible changes in payoffs.

Sources. See Robinson and Goforth 2005 *The Topology of 2x2 Games: A New Periodic Table* and Bruns 2014 *Changing Games: An Atlas of Conflict and Cooperation in 2x2 Games.*